

Hijacking Arbitrary .NET
Application Control Flow

Topher Timzen

Security Researcher, Intel

Security Trainer

TopherTimzen.com

@TTimzen

#whoami

https://www.tophertimzen.com/
https://twitter.com/TTimzen
https://twitter.com/TTimzen

Overview

.NET?

Runtime Attacks

Modify Control Flow

Machine Code Editing

Managed Heap

Tools Released

Use .NET to attack

Using Objects on the Heap

Why are we Here?

CLR Attacks

Controlling the Common Language
Runtime

Accessing raw objects on Managed Heap

Manipulate AppDomains

• Controlling all Loaded Code

• Controlling Just-In-Time Compilation

Attack With ASM

Manipulate Resources

Attack methods at ASM level

Alter application control flow

Runtime
.NET Process

 CLR (2.0/4.0) & AppDomains

 Assemblies (.EXE and .DLL(s))

 Objects

 Properties

 Fields

 Instance Methods

 Classes

 Methods

 Logic

Gray Frost
&

Gray Storm

The Tools

Gray Frost

Gray Frost
Payload delivery system

C++ .NET CLR Bootstrapper

 Creates or injects 4.0 runtime

 Capability to pivot into 2.0 runtime

 Contains raw payload

2 Rounds

GrayFrostCpp

GrayFrostCSharp

• C# Payload

Round 1

.NET Process

Round 1

Mscoree

GrayFrostCpp

Round 1
GrayFrostCpp

Round 1

GrayFrostCSharp

GrayFrostCpp

Round 2

.NET Process

Round 2

.NET Process

GrayFrostCSharp

Round 2

.NET Process

payload void
main()

GrayFrostCSharp

Round 2

.NET Process

Payload

.NET Process

Pivoting Between runtimes

Mscoree

GrayFrostCpp

Pivoting Between runtimes

GrayFrostCpp

Pivoting Between runtimes

GrayFrostCSharp

GrayFrostCpp

Pivoting Between runtimes

GrayFrostCSharp

GrayFrostCpp

Pivoting Between runtimes

GrayFrostCpp

Pivoting Between runtimes

GrayFrostCSharp

GrayFrostCpp

Pivoting Between runtimes

GrayFrostCSharp

GrayFrostCpp

Pivoting Between runtimes

Gray Storm

Gray Storm
Reconnaissance and In-memory attack

payload

Features

Attacking the .NET JIT

Attacking .NET at the ASM level

ASM and Metasploit payloads

Utilize objects on the Managed Heap

Gray Storm Usage

Controlling the JIT

Method Tables contain address of JIT
stub for a class’s methods.

During JIT the Method Table is referenced

We can control the address

 Lives after Garbage Collection

Controlling the JIT

Controlling the JIT

Control Flow Attacks
.NET uses far and relative calls

0xE8; Call [imm]

 0xFF 0x15; Call dword
segmentRegister[imm]

relCall = dstAddress - (currentLocation+ lenOfCall)

ASM Payloads
Address of a method known through

Reflection

Overwrite method logic with new ASM

Steal stack parameters

Change events

ASM Payloads

Change return TRUE to return FALSE

Password validation

Key & Licensing validation

SQL Sanitization

Destroy security Mechanisms

Overwrite logic

Update Mechanisms

ASM Payloads

ASM Payloads

Metasploit

Hand Rolled

Portable Environment Block (PEB) changes

Portable Environment Block

http://www.tophertimzen.com/blog/shellcodeDotNetPEB/

http://www.tophertimzen.com/blog/shellcodeDotNetPEB/

Object Hunting in Memory

Managed Heap

Storage point for .NET Objects

New reference objects added to heap

Garbage Collector removes dead
objects

Managed Heap

Storage point for .NET Objects

New reference objects added to heap

Garbage Collector removes dead
objects

Let’s manipulate it!

Object Hunting in Memory

Objects are IntPtrs

Point to Object Instance on Managed Heap

All instantiated objects of the same class share
the same Method Table

Reflection Object Hunting

Win

Finding Objects at Runtime

i. Construct an object and find location
of Managed Heap

ii. Signature instantiated type

iii. Scan Managed Heap for object pointers

iv. Convert object pointers to raw objects

v. ????

vi. PROFIT

Finding Objects at Runtime

i. Construct an object and find location
of Managed Heap

ii. Signature instantiated type

iii. Scan Managed Heap for object pointers

iv. Convert object pointers to raw objects

v. ????

vi. PROFIT

Construct an Object

Use Reflection to invoke a constructor

Can instantiate any object

If a constructor takes other objects,
nullify them

https://gist.github.com/tophertimzen/010b19fdbde77f251414

https://gist.github.com/tophertimzen/010b19fdbde77f251414

IntPtr = 024e9fe8

024e9fe8 (Object)

00000005

00000001

00000000

IntPtr = 5

STACK

024e9fe8 (Object)
L

H

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

Find location of Managed Heap

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

IntPtr = 024e9fe8

024e9fe8 (Object)

00000005

00000001

00000000

IntPtr = 5

STACK

Managed Heap 024e9fe8 (Object)
L

H

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

Find location of Managed Heap

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

IntPtr = 024e9fe8

024e9fe8 (Object)

00000005

00000001

00000000

IntPtr = 5

STACK

024e9fe8 (Object)
L

H

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

Find location of Managed Heap

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

IntPtr = 024e9fe8

024e9fe8 (Object)

00000005

00000001

00000000

STACK

L

H

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

Find location of Managed Heap

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d

Finding Objects at Runtime

i. Construct an object and find location
of Managed Heap

ii. Signature instantiated type

iii. Scan Managed Heap for object pointers

iv. Convert object pointers to raw objects

v. ????

vi. PROFIT

Signature instantiated type

Object Instances contain a Method Table
pointer to their corresponding type.

(x86)

 Bytes 0-3 are the Method Table (MT)

 Bytes 4-7 in MT is Instance Size

0:009> dd 024e9fe8
024e9fe8 00774828 0000038c 00000001 00000000

Signature instantiated type

Object Instances contain a Method Table
pointer to their corresponding type.

(x64)

 Bytes 0-7 are the Method Table (MT)

 Bytes 8-11 in MT is Instance Size

0:008> dd 00000000024e9fe8
00000000`0286b8e0 ea774828 000007fe

Finding Objects at Runtime

i. Construct an object and find location
of Managed Heap

ii. Signature instantiated type

iii. Scan Managed Heap for object pointers

iv. Convert object pointers to raw objects

v. ????

vi. PROFIT

Scan Managed Heap

Scan down incrementing by size of object

Scan linearly up to top of heap

Compare object’s Method Table to the
reference

If they match, get IntPtr address of object

Finding Objects at Runtime

i. Construct an object and find location
of Managed Heap

ii. Signature instantiated type

iii. Scan Managed Heap for object pointers

iv. Convert object pointers to raw objects

v. ????

vi. PROFIT

Convert object ptr -> raw obj

STACK

Refer (System.IntPtr)

pointer(024ea00c) pointer(024ea00c)

L

H

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b

Convert object ptr -> raw obj

STACK

Refer (System.IntPtr)

pointer(024ea00c)

pointer(024ea00c) L

H

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b

Convert object ptr -> raw obj

Refer (GrayStorm.testClass)

pointer(024ea00c)

STACK

L

H

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b

Finding Objects at Runtime

i. Construct an object and find location
of Managed Heap

ii. Signature instantiated type

iii. Scan Managed Heap for object pointers

iv. Convert object pointers to raw objects

v. ????

vi. PROFIT

????

PROFIT

Superpowers and Things?

Change Keys

Change Fields / Properties

Call Methods

With arguments!

Automation

Automation

GrayFrost can be used with automated
payloads

Constructing Attack Chains

How to construct attack chains

Gray Wolf / IL Decompiler
 Find Methods, Fields & Properties of

interest
 Locate meaningful objects
 Discover high level control flow

Gray Storm “Debugging” functionality
 Breakpoint at constructors or methods

from Method Pointers
 Use with WinDbg

Utilize DLL Hijacking!

Hybrid .NET/ASM Attacks

Hybrid C#/ASM code in .NET

Encrypting .NET payloads and
unwinding

Encrypting ASM Payloads

Payload System

C# is easy

Can use Gray Frost in any
application

Low and High level gap is easy

.NET Hacking Space

Small

Few tools

 Mostly hacking WoW

 Lots of PowerShell

Previous DEF CON talks

 DEF CON 18 & 19 - Jon McCoy

Conclusion

Arbitrary .NET applications can
be injected and changed

New .NET attack possibilities

New tools that support
automation

Get Gray Frost and Storm

github.com/graykernel

https://github.com/graykernel
https://github.com/graykernel

Questions?
Contact Me

@TTimzen

https://www.tophertimzen.com

Get Gray Frost and Storm

github.com/graykernel

White Papers

Hijacking Arbitrary .NET Application Control Flow

Acquiring .NET Objects from the Managed Heap

https://twitter.com/TTimzen
https://twitter.com/TTimzen
https://www.tophertimzen.com/
https://github.com/graykernel
https://github.com/graykernel

