
Acquiring .NET Objects from the Managed Heap
Topher Timzen

Dept. of Computer Science
Southern Oregon University

2015

ABSTRACT

This paper will describe how to use any instantiated object
in the .NET CLR managed heap as if it were declared locally.
It will be shown that by referencing object pointers from
the managed heap, an attacker control objects being used in
an application. Reflective techniques will be discussed and a
signature will be introduced to find any object on the managed
heap.

I. INTRODUCTION

The .NET Framework uses the Common Language Run-
time, CLR, to manage the execution of .NET programs. There
are 4 major versions of the CLR available and multiple .NET
versions within each [2].
CLR V e r s i o n	. NET V e r s i o n
−−−−−−−−−−−−−	−−−−−−−−−−−−−−−
1 . 0	1 . 0
1 . 1	1 . 1
2 . 0	2 . 0 , 3 . 0 , 3 . 5
4 . 0	4 . 0 , 4 . 5

For the purpose of this paper, only CLR versions 2.0 and
4.0 will be discussed as the authors feels 1.0 and 1.1 are not
relevant for attacking modern applications.

Using Reflection [4] key information about an object can
be discovered. A plethora of information in objects is useful
for attacking or reverse engineering such as a list of fields,
instance methods, static methods and variables that an object
contains. Furthermore, once an object is locally accessible an
attacker can manipulate it in any way they want.

Any object can be instantiated using reflection. While that
local reference is not necessarily usable by an attacker, it can
be used to reveal both the signature of all objects of that class
and the memory location of the managed heap, bypassing any
address space layout randomization, ASLR. All instantiated
objects from a specific class share the same Method Table
(MT) pointer, which will be used later to locate objects on the
managed heap.

Once the Method Table for a specific class is known and
the managed heap discovered, an attacker can scan through
the managed heap to locate all objects instantiated from a
specific class and use them locally. To showcase this technique
a sample application written in .NET will be utilized and
compiled in x86 and x64 with both the 2.0 and 4.0 CLR.

II. FINDING OBJECTS WITH WINDBG

In order to understand what objects look like in memory
WinDbg was used frequently in the author’s analysis. Using

the SOS Debugging Extension (SOS.dll), WinDbg allows
the user to debug managed applications (programs using the
CLR)[3]. The most useful extensions to locate and understand
objects are dumpheap and dumpobj. The following WinDbg
results are for the 2.0 CLR in x86, but the same techniques
apply for all runtimes and x64.

Running dumpheap will show all of the objects on the
managed heap, where each object lives on the heap, the size
of the object and its MT pointer. Most of the addresses
from dumpheap for the following example are within the
range 0x02721000 to 0x0284f35c with a few appearing from
0x03721000 to 0x037f0578. So far, objects of concern have
appeared within the lesser range as newly created objects are
allocated there.

0:009>! dumpheap
Address MT S i z e
[s n i p]
0284 c1b8 6 e3da388 36
0284 c1dc 6 b2b390c 72
0284 c224 6 b2b3ba0 16
0284 c234 6 e3da4f8 16
0284 c244 6 e3d9fb4 32
0284 c264 6 b2b3ba0 16
[s n i p]
t o t a l 25237 o b j e c t s

Furthermore, this extension will show the statistics for each
object instantiated which includes the number of them present
on the managed heap.
0:009>! dumpheap
[s n i p]
S t a t i s t i c s :

MT Count T o t a l S i z e C l a s s Name
[s n i p]
6 db6ce80 1 100 System . D i a g n o s t i c s . F i l e V e r s i o n I n f o
6 b2aa3e4 5 100 System . Windows . Forms . RichTextBox+ O l e C a l l b a c k
6 a f488e8 5 100 System . C o n f i g u r a t i o n . C o n f i g u r a t i o n S c h e m a E r r o r s
007 c078c 5 100 GrayStorm . s h e l l c o d e . da taBox

All objects of the same type share the same Method Table,
which provides metadata about Object Instances [1]. Using the
-mt parameter on dumpheap with a MT address from above,
all objects using that Method Table are shown.

0:008> ! dumpheap −mt 007 c078c
Address MT S i z e
027 fb5b0 007 c078c 20
027 fb5e4 007 c078c 20
027 f b 5 f 8 007 c078c 20
027 fb60c 007 c078c 20
027 f b f 8 4 007 c078c 20
t o t a l 5 o b j e c t s
S t a t i s t i c s :
MT Count T o t a l S i z e C l a s s Name

007 c078c 5 100 GrayStorm . s h e l l c o d e . da taBox
T o t a l 5 o b j e c t s

Now all objects instantiated from
GrayStorm.shellcode.dataBox are shown as they all pointed
back to the MT at 0x007c078c. dumpobj can now be used
on the address of an object to show its fields and more
information about it.
0:008> ! dumpobj 027 fb5b0
Name : G r a y F r o s t . s h e l l c o d e . da taBox
MethodTable : 007 c078c
EEClass : 00336 fd4
S i z e : 20(0 x14) b y t e s

(C:\ b i n\G r a y F r o s t . exe)
F i e l d s :
MT F i e l d O f f s e t Type VT A t t r Value Name

6 e3e0d48 40001 ac 4 System . S t r i n g 0 i n s t a n c e 027 fb45c name
6 e3e37b8 40001 ad 8 System . Byte [] 0 i n s t a n c e 027 f a e 0 c d a t a
6 e3e2 f94 40001 ae c System . I n t 3 2 1 i n s t a n c e 0 i n d e x T o S t a r t C l e a n i n g

The first four bytes of the above object hold a pointer back
to its Method Table.
0:008> db 027 fb5b0
027 fb5b0 8 c 07 7 c 00 5 c b4 7 f 02−0c ae 7 f 02 00 00

00 00 . . | . \

Reconstructing the whole Method Table and Object Instance
is not important because once a reference object is available
in a local scope reflection can be used and anything about
that object can be seen. The size of an Object Instance is
necessary to create a robust scanner and the size is the second
four byte block of a Method Table as shown by Kommalapati
and Christian [1].

Using the knowledge that an instance object’s first four
bytes are the Method Table and all like objects share the
same pointer, an attacker can find the location of the heap in
memory. Once the heap is located they can brute force it by
looking for the Method Table reference they require to obtain
object references.

III. FINDING OBJECTS AT RUNTIME

In order to find objects at runtime, the exact location of
the managed heap needs to be discovered. To discover this
location a signature for the specific kind of object for which
one is searching needs to be instantiated. Once instantiated,
the managed heap location can be found as well as the MT
for the object. Utilizing Reflection the constructor of a class
can be called to instantiate a local reference.
Type r e f c = t y p e o f (G r a y F r o s t . t e s t M e t h o d s) ;
C o n s t r u c t o r I n f o c t o r = r e f c . G e t C o n s t r u c t o r (Type

. EmptyTypes) ;
o b j e c t w a n t e d O b j e c t = c t o r . Invoke (new o b j e c t []{}) ;

Once we have a local reference we are able to discover its
raw memory address by manipulating a method’s stack frame
(Keep in mind that the details of obtaining the raw IntPtr to an
object differs between x86 and x64 assembly because of how
they handle argument passing). For both architectures, unsafe
code will be utilized in C# (which is still usable in a target
application compiled disallowing unsafe code) to obtain a raw
object pointer.

A. x86

In x86 architecture arguments are pushed onto the stack in
reverse order. In order to obtain the object pointer, an IntPtr
will be declared locally and then dereferenced to obtain the
objects pointer in memory by traversing through the current
stack frame.
p u b l i c s t a t i c I n t P t r g e t O b j e c t A d d r (o b j e c t

w a n t e d O b j e c t)
{

I n t P t r o b j P t r = I n t P t r . Zero ;
u n s a f e
{

o b j P t r = ∗(& o b j P t r − 3) ;
}
r e t u r n o b j P t r ; / / 0 x260a4c8

}

objPtr will now contain the address of the wantedObject.
In the .NET CLR object instances are pointers back to their
Object Table on the managed heap, which means we now know
the location of the heap.
0:008> ! do 260 a4c8
Name : G r a y F r o s t . t e s t M e t h o d s
MethodTable : 00286 d34
EEClass : 00382348
S i z e : 12(0 xc) b y t e s
(C:\ b i n\G r a y F r o s t . exe)
F i e l d s :

MT F i e l d O f f s e t Type VT A t t r Value Name
6 e0437b8 4000002 8 System . Byte [] 0 s t a t i c 0260 a 3 f c o b j e c t P t r

Now that the address of the Object Table is known and
there is a reference to the Method Table location, the first four
bytes of memory from the object location at 0x260a4c8, the
managed heap can be brute-forced for other objects matching
that signature. The below pseudocode is the author’s approach
to brute forcing the managed heap. For searching at a negative
offset the size field (from the MT) cannot be utilized and the
addresses are read linearly.
While v a l i d memory a t p o s i t i v e o f f s e t from o b j e c t

Ob ta in o b j e c t s i z e and jump t o n e x t o b j e c t
Check f i r s t f o u r b y t e s f o r ma tch ing MethodTable
IF MethodTables match

Add o b j e c t I n t P t r t o l i s t
While v a l i d memory a t n e g a t i v e o f f s e t from o b j e c t

Check each 4 b y t e MT a d d r e s s t o s e e i f i t s a d d r e s s
i s t h e same as t h e w a n t e d O b j e c t s

IF MethodTables match
Add o b j e c t I n t P t r t o l i s t

Once the brute forcing is finished a listing of all object
IntPtrs of GrayFrost.testMethods are present and need to be
converted back into the object type. Again utilizing stack
manipulation .NET can be tricked into placing an IntPtr into an
object pointer because as previously shown objects are IntPtrs.
The below code will take an IntPtr and place it into a local
object.
p u b l i c s t a t i c o b j e c t G e t I n s t a n c e (I n t P t r p t r I N)
{

o b j e c t r e f e r = p t r I N . GetType () ;
I n t P t r o b j P t r = p t r I N ;
u n s a f e
{
∗(& o b j P t r − c l r S u b) = ∗(& o b j P t r) ;

}
r e t u r n r e f e r ;

}

1) CLR 2.0 vs CLR 4.0: I discovered for both the 2.0 and
4.0 CLR on x86 the wantedObject parameter was at a negative
stack offset of 3 from objPtr. Also, the clrSub offset is 1 for
CLR 2.0 and 2 for CLR 4.0 to place an IntPtr into an object.

B. x64

By placing three local variables in a method, see below, I
discovered that the address of the object will become present.
If there are less than three local arguments, the CLR does not
place the object pointer in a reachable range.

p u b l i c s t a t i c I n t P t r g e t O b j e c t A d d r 6 4 (o b j e c t
w a n t e d O b j e c t)

{
I n t P t r o b j P t r = (I n t P t r) 4 ;
o b j e c t r e f e r = w a n t e d O b j e c t ;
I n t P t r o b j P t r 2 = (I n t P t r) 8 ;
u n s a f e
{

o b j P t r = ∗(& o b j P t r + c l r S u b) ;
}
r e t u r n o b j P t r ;

}

Once the objPtr is known, the x86 pseudo code for finding
objects will also work. For getting an object back from an
IntPtr, the below code can be used.
p u b l i c s t a t i c o b j e c t G e t I n s t a n c e 6 4 (I n t P t r

w a n t e d O b j e c t)
{

I n t P t r o b j P t r = w a n t e d O b j e c t ;
o b j e c t r e f e r = w a n t e d O b j e c t . GetType () ;
I n t P t r o b j P t r 2 = (I n t P t r) 8 ;
u n s a f e
{
∗(& o b j P t r + 1) = ∗(& o b j P t r) ;

}
r e t u r n r e f e r ;

}

1) CLR 2.0 vs CLR 4.0: There are no differences in the
above methods for CLR 2.0 and 4.0 for x64 assembly.

IV. CONCLUSION

An attacker now has the ability to instantiate any object of
their choice, brute-force the managed heap for other objects
instantiated from the same class, and use them as if they
were declared locally. Using Reflection, all of the fields and
properties of an object can be viewed and altered and instance
methods can be called. The underlying power for .NET attack
chains using constructed objects is massive as attackers can
instantiate any object, find all other objects on the heap that
match it and do anything with them.

REFERENCES

[1] Hanu Kommalapati and Tom Christian, Drill Into .NET Framework
Internals.

[2] Microsoft Corporation. Common Language Runtime (CLR).
[3] Microsoft Corporation. SOS.dll (SOS Debugging Extension)
[4] Jon. Reflections Hidden Power. May 2002.

